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On the ba s i s  of a superpos i t ion  model  of turbulent  eddies  in contact  with a solid wall,  some  new 
laws r ega rd ing  the behav ior  of the turbulent  boundary  l ayer  a r e  es tab l i shed .  

To calcula te  heat -  and m a s s - t r a n s f e r  p r o c e s s e s  in technical  equipment ,  it is n e c e s s a r y  to know the laws 
of turbulent  boundary-  layer  flow, 

Among the theo r i e s  es tab l i sh ing  turbulent  bounda ry - l aye r  laws, a spec ia l  place belongs to that  of Mil-  
l ionshchikov [1], which has made a s ignif icant  contr ibut ion to the turbulent  b o u n d a r y - l a y e r  problem.  

Wri t ing  Newton 's  law for  a v iscous  liquid 

in the d imens ion les s  f o r m  

and using the in tegra l  of Eq. (2) 

"~w Ou (1) 
p 011 

OU + 
- - -  = i ( 2 )  

Oy + 

U § ~ 11+, 

sa t i s fy ing the condition of liquid contact  at a mot ionless  wall,  Mill ionshchikov obtained the equation 

(3) 

Ou + (4) 
y+ ~ U +, 

0!1 + 

which was given the following physical  in terpre ta t ion:  " L a m i n a r  flow may be r e p r e s e n t s  as  the superpos i t ion  
of eddies  fluctuating at  the wall  with d imens ion less  angular  veloci ty  8u+/~y +, with a fluctuation veloci ty  at a 
point y+ equals  to the flow veloci ty  u+." 

Mill ionshchikov then cons idered  turbulent  flow, like l amina r  flow, in the fo rm of a superpos i t ion  of eddies,  
but r each ing  the boundary  su r face  of a l amina r  sublayer  c h a r a c t e r i z e d  by the d imens ion less  th ickness  6 +. 

On the bas i s  of the condition that liquid flow occurs  with a min imum of kinetic ane rgy  cor responding  to 
the specif ied liquid fl0w re la ted  to the flow r e s i s t ance ,  Mill ionshchikov obtained the bas ic  equation of his theory  
in the f o r m  

( y + - -  80) ~ 1 , (5) 
Oy § • 

where  5 + and ~t a r e  e m p i r i c a l  constants .  

Compar ing  Eqs .  (5) and (4), it is evident  that, despi te  a well-founded physical  model,  Millionshchikov did 
not obtain a genera l ized  equation for  the turbulent  boundary layer  that was f ree  f r o m  e m p i r i c a l  constants .  

Below, it will be shown that a genera l ized  equation not containing any empi r i ca l  constants  can a lso  be ob- 
tained for the case  of a turbulent  boundary layer .  

F i r s t  of all ,  Eq. (2) will be analyzed.  

I f  the function / . (x) ,  defined by the exp re s s ion  
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l, (x) - 
u,  (x) '  

is taken as  the sca le  for the va r i ab l e  y, the function u(x, y) is t r a n s f o r m e d  to the f o r m  u ' (x ,  y+). 
u' (x, y+) by the dynamic  ve loc i ty  u , (x) ,  .it is found that  

Hence,  Eq. (2) is 

(6) 

After  dividing 

u' (x, y+) (7) u + (x, y+) = 
u, (x) 

essen t i a l ly  the in tegra l  of the m o r e  genera l  equation 

a au+(x, y+) = o. (8) 
ax og + (x, g) 

Solving Eq. (8) g ives ,  taking definite boundary conditions into account,  Eq. (2). 

On the bas i s  of the analogy with Eq. (4) and the condition in Eq. (8), the bas ic  equation of a turbulent  
boundary l ayer  is wr i t ten  in the f o r m  

au = u ,  (9) Ry# 

where  the genera l i zed  d imens ion le s s  veloci ty  U sa t i s f i e s  the condition 

a aU(x, R) = o. (lo) 
ax OR (x, g) 

Here  R is the genera l i zed  d imens ion le s s  dis tance f r o m  the wall.  

By definition, the function U(x, R) of the a rgumen t  R(x, y) involving the no rma l i zed  va r i ab le  x will be r e -  
garded  as  continuous in the c losed in te rva l  

R~ <R ~<R2, (11) 

if in any segment  

RA ~R ~RB (12) 

of this in te rva l  the following condition is sa t i s f ied  

RB 

o t = o, 
Ox. 

RA 

(13) 

where  

R2 > RB > RA > R~ ~ O, (14) 

I t  is a l so  a s s u m e d  that  the turbulent  boundary layer  is a continuum of continually in teract ing local liquid 
m a s s e s  (eddies), and that  a f t e r  a sufficient  t ime  in terva l ,  each point of the turbulent  boundary layer  in a r e f e r -  
ence f r a m e  fixed in the solid wall  will co r r e spond  to an ave raged  local m a s s .  In this sense ,  the turbulent  bound- 
a r y  l ayer  is ,  as  it were ,  quantized over  the eddies .  

Since the r e a s o n  for the appea rance  of turbulent  eddies  in an init ial ly unper turbed  liquid is the introduc-  
tion of a moving solid wall,  the initial  eddies (eddies of min ima l  dimension)  a r i s e  p rec i se ly  at  the wall.  T h e r e -  
fore,  i t  is expedient  to cons ider  the region of definit ion of the mean longitudinal ve loci ty  in the fo rm 

0 ~x~  ~ x  ~x~,  0 < I. (x) ~<y ~<8(~). (15) 

Here  l , (x)  is the mean longitudinal d imens ion  (radius) of the eddy forming at the wall;  6(x) is the boundary-  
layer  th ickness .  

Suppose that,  in the f i r s t  approximat ion ,  l.(x) coincides with Eq. (6). I t  will be shown that  i fu (x ,  y )wi th  
the region of definit ion in Eq. (15) may be formula ted  in a g r e e m e n t  with the no rma l i zed  function U(R), then the 
e x p r e s s i o n s  
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u + -  1 ( 1 6 )  
U ~  - -  

and 

u6 + -  1 

R = ing+ (17) 

In 6 + 
a r e  the des i r ed  functions.  

In fact ,  the condition in Eq. (13) means  that  the function U(r) is unique. The two-d imens iona l  region of de- 
finition in Eq. (15) mus t  then be conver ted  into a curve  R(x, y), and the boundary c u r v e s / . ( x )  and 6(x) m u s t c o r -  
respond  to two values of R. 

For  c la r i ty ,  the functions u(xl, y) and u(x2, y) a r e  shown in Fig. l a ,  where  y is r ega rded  as the a rgument  
and x as a p a r a m e t e r .  The shaded region c o r r e s p o n d s  to poss ib le  values  of u(x, y). 

The function y+(x, y) is obtained by dividing y by the s c a l e / . ( x )  (Fig. lb) .  

Next,  the exp re s s ion  

u' (x, g+) - -  u, (x) u + (x, g+) - -  1 V' (x, v +) = 
u~ (x) - -  u. (x) u~- (x) - -  1 

is in t roduced (Fig. lc ) .  At f i r s t  glance,  it a p p e a r s  that  for  the points (6 +, 1) and (5 +, 1) to coincide,  R(y+), mus t  
be  chosen as  the ra t io  R = f(y+)/f(6+), where  f(y+) is an a r b i t r a r y  function. However ,  this af fec ts  the conver-  
gence point (1, 0) in Fig. l c ,  s ince the function R = f(1)/f(5 +) depends on the value of 6% 

This  does not occur  if  the fimction lny  + is taken as f(y+). In this ease ,  Eqs.  (16) and (17) a r e  obtained 
(Fig. ld) .  

But it does not follow f r o m  the foregoing that  each  value of R co r r e sponds  to only one value of U, since 
Eqs.  (16) and (17) a r e  n e c e s s a r y  but not suff icient  for Eq. (13) to hold over  the whole of the segment  JR1, R2]. 

Dividing U by R, the function ~, which depends on the values  of u+ and y+, is introduced 

U ~6 (18) 

where  

ln6 + (19) 
W6 ---- u6 + _ 1 ' 

W ~- Ing+ (20) 

U + -  1 

The following r e su l t  may be obtained f rom Eq. (18) 

OU W6 1 
aR 

Substi tut ing Eq. (21) into Eq. (10) yie lds  

R a~ '). 
OR, 

(21) 

0 XF~ ( 1  R O~F)=O.  
ax ~F �9 aR 

To sa t i s fy  Eq. (13) s imul taneously ,  the re la t ion  R 2 = 1 ~s a s sumed  in Eq. (11). 

Equation (22) has two pa r t i cu la r  solutions 

OT T 

OR R 

and 

(x, v) = ~8  (x). 

(22) 

(23) 

(24) 
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Fig. 1. Normal izat ion of function u(x, t) with region of de- 
finition in Eq. (15): a) u(%, y) (curve 1); u(x 2, y) (curve2) .  

Consider ing Eqs.  (23) and (21) jointly,  it follows that 

U = 1, (25) 

since the segment  JR1, R2] contains the point R 2 = 1, for which U = 1. 

Equation (23) and (25) hold outside the boundary layer ,  where  u(x, y) = u6(x). 

Considering Eqs.  (24)and (21) jointly, it follows that 

a u  = 1. (26)  
OR 

Since the segment  JR1, R2] contains the point R~ = 1, the in tegral  of Eq. (26) will be the equation 

U = R .  

As is evident f rom the r e su l t s  of [1], R1--- In 6~/ln 6 + (R 1 = In 5+/In 6 + if there  is no Karman t rans i t ion r e -  
gion in the turbulent  boundary layer) .  

Thus,  for  the case  of a turbulent  boundary layer ,  Eqs .  (26), (27), and (9) a re  genera l ized  analogs of Eqs.  
(2), (3), and (4) cor responding  to a laminar  boundary layer  (sublayer).  

The condition under which Eq. (9) t r an s fo rm s  to Eq. (4) when y+- - i  will not be determined.  

F r o m  Eq. (24) both a un iversa l  logari thmic dis tr ibut ion law of the mean longitudnal veloci ty  

u+=~l l n y + + l ,  (28) 
~8 

and a un iversa l  ve loc i ty -defec t  law 

u~--u 1 l n / ~  ) 

a re  obtained. For  smal l  y+, a f te r  s e r i e s  expansion of lny +, it follows f rom Eq. (28) that ~5(x) = ~(x, y)= (y+- 
1)/(u + -  1). Since u + -  1 as y+- - l ,  the function ~ ,  has an inde terminacy  of 0/0 type at  y+ = 1.. Removing this in- 
de te rminacy ,  it is found that ~,  = (ha+/ay+)T1. 

Hence,  when 

T.---- 1 (29) 

Eq. (9) t r a n s f o r m s  to Eq. (4) when y + ~ l .  

Note that the function ,I, obtained may be chosen as  the turbulence c r i t e r ion .  

mula 
With inc rease  in y+, �9 d e c r e a s e s  in the laminar  sublayer  f rom 1 at the wall in accordance  with the for-  
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Fig. 2. Distribution of �9 for var ious K = 
(v/u~)(Su6/ax): 1) K = 3.25.10-~; 2) 0; 3) 

0; 4) 1.05.10-6; 5) according to Eq. (32); 
6) Eq. (24); 7) Eq. (31). 

In g+ (30) 

y+ - -  l 

to a minimum value corresponding to the onset of Kline pole disruption [2]. With further  increase  in y+, 
r i s e s  insignificantly if there  is a Karman t ransi t ion region in the layer.  Fur ther ,  with a zero p res su re  gradient 
in the turbulent core  and the outer par t  of the layer ,  ~I, remains  constant and equal to ~I, 5. 

In the case of turbulent flow in a channel, in a tube, and at a plate, with y+ = 5 + and a negative p ressu re  
gradient  

which follows f rom Eq. (23). 

For  a positive p r e s s u r e  gradient  

= g 0 - - 1 ,  

and for  a zero  gradient  

The condition in Eq. (33) is obtained f rom Eq. (24). Because laminar mass  penetrates into the turbulent 
layer  for a smooth plate, with y+<- 5 +, y+/5 +~ 1, Eq. (3l) t r a n s f o r m s  smoothly to Eq. (33). 

In Fig. 2, as an example,  Eqs.  (31)-(33) and (24) a re  compared  with the experimental  data of [2], where 
there  was no Karman t rans i t ion  region in the turbulent boundary layer  with zero p res su re  gradient.  The ex- 
per imental  data a re  evidently in sa t i s fac tory  agreement  with the theore t ica l  curves .  

It may also be shown that ~I, 5 ~ 1/3 as 5 + ~ .  Then Eq. (19) determines  the frict ion at the wall, since, 
specifying y, u 5, and 6, u ,  may be calculated by t r ia l  and e r r o r  f rom Eq. (19). 

F o r  turbulent  flow at a rough surface,  $ ,  > 1. Since ~I,5> 1, ~s = 1 is always found for y+ = y+  in view 
of the continuity of ~.  Then the express ion 

u~- = In g~ -}- 1 (34) 

in the coordinates  u+, -In y+ determines  the boundary surface along which fluctuate the turbulent eddies sat isfy-  
ing the fluctuation condition 

Rs OU~ = U~, (35) 
0Rs 

where 

U s  _ u - -  u s 
u s _ _ u ~  ' (36) 
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Fig. 3. Dis t r ibut ion u+(y +) for  di f ferent  d imens ion le s s  roughness  heights k+: l) acco rd  toEq .  
(28); 2) Eq. (38); 3) Eq. (34); 4) k + = 0 ;  5) 19.2; 6) 68.5; 7) 119; 8) 268. 

Fig. 4. Dependence of ~5 on inject ion p a r a m e t e r  v+: 1) f r o m  Eq. (40). 

and 

In (y/y~) (37) 
R~ 

In ( ~l y~) 

Us : Rs. (38) 

As an example ,  in Fig. 3, Eqs .  (34), (38), and (28) a r e  c o m p a r e d  with the expe r imen ta l  data of i3]. The 
e x p e r i m e n t a l  data evident ly  a g r e e  sa t i s f ac to r i ly  with the theore t i ca l  cu rves .  

It  is evident  f r o m  Fig. 3 that  the veloci ty  prof i le  has an "elbow" (bend) at  boundary su r face  3, defined by 
Eq. (34); with i nc rea se  in d imens ion les s  roughness  height k += k /1 .  the d imens ion less  dis tance y+ = Y s / l .  to 
the su r face  3 i n c r e a s e s .  

This  is because  fluctuation of the eddies is hindered in the region y+< y+ by the p re sence  of roughness  of s 
height k, whe reas  on su r face  3 the mean  turbulent  eddies f luctuates  as  if at  a smooth  wall.  The re fo re ,  su r face  
3 is expedient ly  chosen as an equivalent  smooth  wall,  and the d imens ion les s  dis tance to this sur face  y+ as  the s 
equivalent  d imens ion le s s  roughness  height. 

If, for some reason ,  the ini t ial  value ~/50, is changed to ~I, 5 K, it follows f rom Eq. (19) that 

Too - -  T0K = In [(K), (39) 

where  K is some p a r a m e t e r  desc r ib ing  the change in the boundary layer  (e.g., the d imens ion less  p r e s s u r e  
gradient) .  

Using Eq. (39), the app rop r i a t e  ealcula t ional  fo rmu la s  for complex  liquid flow conditions may be con- 
s t ruc ted .  Fo r  example ,  i t  may  be shown that  for 10 -2< - v+<- 1 the effect  of porous  injection on the turbulent  
boundary  layer  is desc r ibed  by the re la t ion  

1 ~00 log v +. ( 4 0 )  %~ = - - - ~  

In Fig. 4, Eq. (40) is c o m p a r e d  with the data of [4]. The co r r e l a t i on  between Eq. (40) and the expe r imen-  
tal  data of [4] is  s a t i s f ac to ry ,  I t  is evident  f r o m  Fig. 4 that  if  the injection veloci ty  v approaches  the dynamic 
ve loc i ty  u . ( v  + = v /u .  ~ 1 )  then the turbulent  b o u n d a r y - l a y e r  c r i t e r i o n  ~6v is degenera te  (,I,6v~0). This  is because  
the turbulent  boundary  layer ,  in its usual  physical  meaning,  c e a s e s  to ex is t  when v + ~ l .  

Thus,  genera l i za t ion  of the Mil l ionshchikov superpos i t ion  method for turbulent  eddies undulating along a 
solid wall  has al lowed some  unknown laws to be d i scovered ,  new quanti tat ive re la t ions  to be obtained, and ca l -  
culat ions for  complex  flow conditions of the turbulent  boundary  layer  to be s impl i f ied .  

s e c  ; 

N O T A T I O N  

u, mean  longitudinal veloci ty ,  m / s e e ;  v, kinemat ic  v i scos i ty ,  m2/sec;  u .  = ~ dynamic veloci ty ,  m /  
p, densi ty ,  kg/m3;  r W, tangent ia l  s t r e s s  at  wall,  N/m2; 6, b o u n d a r y - l a y e r  th ickness ,  m;  l . =  v /u . ,  t r a n s -  

746 



v e r s e  d i m e n s i o n  of m e a n  eddy  a t  w a l l ,  m;  y+ = y / / . ,  d i m e n s i o n l e s s  c o o r d i n a t e  ; u + = u / u . ,  d i m e n s i o n l e s s  v e l o c -  
i t y ;  v, i n j e c t i o n  v e l o c i t y ,  m / s e c ;  v +=  v / u , ,  d i m e n s i o n l e s s  i n j e c t i o n  p a r a m e t e r ;  k, r o u g h n e s s  he igh t ,  m.  Sub-  
s c r i p t s :  *, flow p a r a m e t e r s  for  y+ = 1; 6, f low p a r a m e t e r s  for  y = 5; W,  w a l l  p a r a m e t e r ;  s ,  flow p a r a m e t e r  
a t  r o u g h  s u r f a c e  wi th  ,P = 1; 0, i n i t i a l  flow c o n d i t i o n s ;  v, flow c o n d i t i o n s  c o r r e s p o n d i n g  to  i n j e c t i o n  v e l o c i t y v .  

1. 

2. 

3. 
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HYDRODYNAMIC REACTION TO ACCELERATED ONE- 

DIMENSIONAL MOTION OF GAS BUBBLES OF 

VARIABLE VOLUME IN AN UNBOUNDED LIQUID 

S. K. Dymenko and V. N. Kuchktn UDC 541.24:532.5 

A s o l u t i o n  i s  g iven  for  the  p r o b l e m  of  the  h y d r o d y n a m i c  r e a c t i o n  of an e l l i p s o i d a l  gas  bubb le  
of v a r i a b l e  v o l u m e  to a c c e l e r a t e d  m o t i o n  and the r e l a t i o n  b e t w e e n  the va lue  of the  a p p a r e n t  
m a s s  and the e c c e n t r i c i t y  of the  bubb le .  

In [1] the  p r o b l e m  of the  mo t ion  of  g a s  b u b b l e s  wi th  c o n s t a n t  v e l o c i t y  in an unbounded vo lume  of  l iquid 
was  s o l v e d ,  and  a r e l a t i o n  was  e s t a b l i s h e d  b e t w e e n  the  c o n s t a n t  v e l o c i t y  a t  which  the bubble  r i s e s  to the  s u r -  
f ace ,  the  f o r m  of the  bubb le ,  and  the  f o r c e s  of v i s c o u s  f r i c t i o n .  In a n u m b e r  of t e c h n i c a l  d e v i c e s ,  mo t ion  wi th  
v a r i a b l e  v e l o c i t y  and v a r i a b l e  bubble  v o l u m e  is  r e a l i z e d .  The  v a r i a b i l i t y  of the  v e l o c i t y  l e a d s  to a d d i t i o n a l  r e -  
s i s t i n g  f o r c e s  [2]; a c c o r d i n g  to  the  a v a i l a b l e  l i t e r a t u r e ,  the  m a g n i t u d e  of t h e s e  f o r c e s  a s  a p p l i e d  to the  v a r i -  
a b l e  v o l u m e  a c t i n g  on a gas  bubb le  in the  f o r m  of an  ob l a t e  e l l i p s o i d  of r e v o l u t i o n  has  not  been  d e t e r m i n e d .  

In  an  e l l i p s o i d a l  c o o r d i n a t e  s y s t e m  p l a c e d  with  c e n t e r  of m a s s  of the  bubb le  f loa t ing  with  v e l o c i t y  U, 

x = cch~cos l l  cos q~; g = cch~cos ~lsin ~; z = csh ~sin ~1 (1) 

for  n o n s y m m e t r i c  po t en t i a l  mo t ion  the  g e n e r a l  so lu t i on  for  the  v e l o c i t y  p o t e n t i a l  has  the  f o r m  [1] 

~p (~, 11) = [Ai sh ~ - -  B (sh ~ arc tg sh ~ + 1)1 sin ~1 (2) 

H e r e  i = ~ and the unknown c o e f f i c i e n t s  A and B a r e  d e t e r m i n e d  f r o m  the b o u n d a r y  cond i t i ons  

1 &p (~, ~) 
lira V- chZ~ - -  cos2q O~ " = U sin ~1, (3) 

= = c  " V - ~ - h - - c o s %  (4)  
On Ot 

In Eq.  (4) and be low,  the  i ndex  0 d e n o t e s  po in t s  t ha t  b e l o n g  to  the  s u r f a c e  of  the  bubb le .  

I f  we t ake  into  accoun t  (3) and (4), the  e x p r e s s i o n  for  the  v e l o c i t y  p o t e n t i a l  a c q u i r e s  the  f o r m  

qo(g, 1 0 =  UCL L - -  s h ~ - t - s h ~ a r c t g s h ~ + l  sin~l + L 0t c h ~  
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